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Abstract

Firstly we discuss and prove some basic properties of integer par-
titions as recursion pk(n) = pk−1(n − 1) + pk(n − k), where pk(n) is
the number of partition λ ` n into k parts, Bressoud’s identity for 2-
distinct partition etc. The introduction is completed with the proof of
Euler theorem of equality of partition into odd and distinct parts. By
the Franklin bijection we prove the Euler pentagonal number theorem
and some of its refinements. Sylvester’s bijection is used to prove one
of Fine’s refinement of Euler theorem. The notion rank of a partition is
introduced and Dyson’s bijection is illustrated on a concrete example.
Finally we present the lecture hall theorem as a finite version of Euler’s
theorem.

1 Introduction

A partition of the natural number n is the sequence λ=(λ1, λ2, ..., λl), with
condition λi ≥ λi+1 where λi ∈ N0,

∑l
i=1 λi=|λ|=n, denoted λ ` n. The

numbers λi are called the parts of a partition, the number of parts l(λ)=l
we call the length of a partition. Let lo(λ) denots the number of odd parts
of a partition. Let e(λ) and a(λ) be any even part and the greatest part
amoung parts of a partition λ ` n, respectively.

Let the set of partitions λ ` n is denoted by Pn. Let Dn be the set of
partitions with mutually distinct parts and On the set of partitions with all
parts odd.

We are going to consider some basic facts on partitions.

Proposition 1 (a) The number of partition λ ` n in l parts equals the
number of partitions µ ` n with l the greatest part, p(n|l(λ) = l) =
p(n|a(µ) = l).
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(b) p(n|self-conjugate) = p(n|parts distinct and odd)

• • • •
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(c) pl(n) = pl−1(n− 1) + pl(n− l)

(d) p(n) = pn(2n)

Proof Proofs of statemets (a) and (b) are evident from the figures above.

(c) If the partition λ ` n has the number 1 as a part, than subtructing it
gives pl−1(n− 1) partitions. If this is not the case, then we subtract 1
from every part, obtaining pl(n− l) partitions.

(d) The statement follows from the previous one: pn(2n) = p2n−1(2n−1)+
pn(n) = pn−2(2n−2)+pn−1(n)+pn(n) = p1(n)+...+pn−1(n)+pn(n) =
p(n).

As an illustration of statement (d) we can say that p(4) = p4(8), i.e.
there is 5 partition of 8 having 4 parts:

(5, 1, 1, 1), (4, 2, 1, 1), (3, 3, 1, 1), (3, 2, 2, 1), (2, 2, 2, 2).

2 Euler’s pentagonal number theorem

As we now, the j-th triangular number is j(j+1)
2 . Having in mind that the

j-th pentagonal number is built from (j − 1)-th triangular number and j2

(see the graphs bellow), for the j-th pentagonal number it holds

jj + (j − 1)(j − 1 + 1)/2 = j2 + (j2 − 1)/2 = j(3j − 1)/2

Considering 1-distinct partitions λ ` n, one can noticed that the number
of partitions with even parts equals the partitions with odd parts; with
exception of n = j((3j− 1)/2 being pentagonal number or its j-th succesor.

Theorem 1 (Euler) Let Don and Ddn be sets of partitions into odd distinct
and even distinct parts, respectively. Then it holds

|Don| = |Ddn|+ E(n), E(n) =

{
(−1)j , n=j(3j ±1)/2
0, otherwise

.
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Figure 1: The first three pentagonal numbers. The j-th pentagonal number
is consisted by the square of j and the (j-1)-th triangular number.
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Figure 2: The map α is a bijection except for the pentagonal number n =
j(3j + 1)/2 and its j-th successor.

Proof (Franklin bijection, 1881.)

The function α : Dn ← Dn keeps parts distinct and changes the parity
of l(λ), but not for all n. Two exceptions are j(3j − 1)/2 and j(3j + 1)/2.
In the latter, if the last row is cut and paste to diagonal - the parity stays
unchanged; if we cut the diagonal and paste it on the buttom - we disturb
the structure of Ferrers graph. An analogy holds for the former.

Note that the bijection α has one more property: it changes the parity
of a(λ). This fact is expressed by the next theorem.

Theorem 2 (Fine) The number of partitions into distinct parts having the
greatest part even equals the number of partitions into distinct parts having
the greatest part odd.

|Dn : a(λ) ≡ 0(mod2)|+ |Dn : a(λ) ≡ 1(mod2)|+


1, n = j(3j + 1)/2

−1, n = j(3j − 1)/2

0, otherwise

As the Example 1 presents, there are 8 partitions of 9 with distinct parts,
four of them with even length and four of them with odd parts. Furthermore,
according to the Fine’s theorem 4 out of these paritions have the greatest
part even (6, 4, 8 and 6) and there are the same number of odd greatest parts
(9, 5, 7 and 5).
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Example 1 n=9

De9 Do9
(8, 1) (9)
(7, 2) (6, 2, 1)
(6, 3) (5, 3, 1)
(5, 4) (4, 3, 2)

3 Sylvester’s bijection

Let λ = (7, 5, 5, 3) ∈ On. We define the function φ : On → Dn as the next
figure illustrates. Since we always can represent an odd number as 1 + 2q,
q ∈ Z, φ is a bijection. According to the Figure 4, it holds

a(µ) =
a(λ)− 1

2
+ l(λ) ⇒ a(λ) + 2l(λ) = 2a(µ) + 1

This proves the next theorem.

Theorem 3 (Fine) The number of partitions µ ` n, a(µ) = m into distinct
parts equals the number of partitions λ ` n into odd parts with a(λ)+2l(λ) =
2m+ 1,m > 0.

� � � ◦ ◦ ◦ ◦
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Figure 3: Sylvester bijection for λ = (7, 5, 5, 3), µ = (7, 6, 4, 2, 1).

As an example, let consider the case n = 11, m = 8. The set O11 :
a(λ) + 2l(λ) = 17 counts two elements: (7, 1, 1, 1, 1), (3, 3, 1, 1, 1, 1, 1). The
same is case within the set D11 : a(µ) = 8, these partitions are (8, 3) and
(8, 2, 1). The whole list of D11 and O11 see in the Example 2.

4 Rank of a partition and Fine’s refinement of the
Euler theorem

The rank r(λ) of a partition λ ` n is defined as the difference between the
largest part a(λ) and the number of parts l(λ) (F.Dyson), r(λ) = a(λ)−l(λ).
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The set of partitions of n with rank r we denote Pn,r. The set of partitions
of n with rank at most r we denote Hn,r while the set of partitions of n with
rank at least r is denoted by Gn,r. Obviously, it holds

p(n, r) = h(n, r)− h(n, r − 1)

g(n, r) = h(n,−r)

where p(n, r), h(n, r), g(n, r) are cardinalities of the previously defined sets,
respectively.

Theorem 4 (Fine) h(n, 1 + r) = h(n+ r, 1− r)

Proof (Dyson’s bijection) Let ψr : Hn,r+1 → Gn+r,r−1, where ψr cuts the
first column of the Young diagram of a starting partition λ and paste it on
the top of the rest of the partition, togather with r squares in addition (see
the figure below).

Now we have to prove that the resulting partition µ ∈ Gn+r,r−1, i.e. that
it holds i) |µ| = n+ r and ii) r(n) ≥ r − 1 where the latter fact is obvious.
Having r(µ) = a(µ)− l(µ) = l(λ) + r− l(µ) and l(µ) = (the length of second
column of λ) + 1, the condition ii) follows immidiately.

ψ1
�

Figure 4: Dyson bijection, λ = (7, 6, 6, 3, 1) ∈ H23,r+1, µ = (6, 6, 5, 5, 2) ∈
G23+r,r−1.

Using this bijection iteratively one can prove the next remarkable refinement
of the Euler theorem. Namely, not only On = Dn but there are subsets of
both type of partitions, with respect to a rank, having the same cardinality
for a given rank.

Theorem 5 (Fine) The number of partitions λ ` n into distinct parts,
r(λ) = r or r(λ) = 2r + 1 equals the number of partitions µ ` n into odd
parts having the greatest part 2r + 1,

|On,a(µ)=2r+1| = |Dn,2r + |Dn,2r+1|.
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So, instead of a proof we will use the Dyson bijection iteratively in the
next example in order to illustrate the theorem. In the first iteration draw
the 1-row diagram representing the smallest part of the starting partition.
Furthermore, apply the ψr where r equals the next smallest part in the
partition.

Example 2

r D11 O11

5 (11) (11)
4 (10, 1) (9, 11)
3 (9, 2), (8, 3) (7, 3, 1), (7, 1, 1, 1)
2 (8, 2, 1), (7, 4), (7, 3, 1), (6, 5) (5, 5, 1), (5, 3, 3), (5, 3, 1, 1, 1), (5, 16)
1 (6, 4, 1), (6, 3, 2), (5, 4, 2) (3, 3, 3, 1, 1), (3, 3, 15), (3, 18)
0 (5, 3, 2, 1) (111)

ψ1 ψ1→ →
ψ3→

ψ5→

ψ3
→

ψ5
→

Figure 5: Iterative Dyson bijection, from λ = (5, 3, 1, 1, 1) to µ = (7, 4) and
λ′ = (5, 3, 3) to µ′ = (7, 3, 1), which are two out of four possibilities for
n=11, r(λ)=2.

5 Lecture hall partitions

Definition 1 Let LN = {λ1 + λ2 + ...+ λN : 0 ≤ λ1
1 ≤

λ2
2 ≤ ... ≤

λN
N }. The

set LN we call the lecture hall partitions of length N .

The name of the set LN suggests that one can imagine λi as the heights
of seats in a lecture hall. For example, (1, 2, 4) is a lecture hall partition of
3 since 0 ≤ 1

1 ≤
2
2 ≤

4
3 .

Theorem 6 (Bousquet-Mélou, Eriksson, 1995)

p(n|lecture hall partition of N) = p(n|even parts < 2N)
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The theorem can be understand as the finite version of the Euler’s theo-
rem. Namely, when N →∞ on the right hand side of the equation we have
On. On the l.h.s. we have

λN−k

N−k ≤
λN−k+1

N−k+1 which reduces to λN−k < λN−k+1

for N →∞, giving the set Dn.
Instead of the full proof of this theorem, that uses Coxeter groups, we will

present a nice bijection between partitions having distinct parts ≤ N and
lecture hall partitions. Let N ∈ N, µ = µ1+µ2+ ...+µk, µ1 ≤ µ2 ≤ ... ≤ µk.

The initial step. Form the partition µ0 = µ1 + µ2 + ... + µm, µm ≤ N ,
µm+1 > N . Form the triangular matrix N × N , with the first µi entries 1
counting from the bottom, in i-th column.

i-th step. Determine the number j, µj = µ[m+ i] = N + j. Cut the j-th
column and the j-th row in the current matrix and paste it according to the
next scheme.

A
A →
B C

A+2
A+2
C+1
B+2

The last step. The sum per columns gives the lecture hall partition.

Example 3 µ = 1 + 3 + 4 + 5 + 7 + 7, N = 4

Initial step. µ0 = 1 + 3 + 4

0 0 1 1
1 1 1

1 1
1

1st step. µ1 = 5 = 4 + 1

1 1 1 1
1 1 2

1 2
2

2st step. µ2 = 7 = 4 + 3
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1 1 1 3
1 2 3

2 3
3

3st step. µ3 = 7 = 4 + 3

1 1 3 3
1 3 4

3 4
4

Finally, the sum per columns gives the lecture hall partition (1, 2, 9, 15).
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